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Abstract 
Recent consolidation by Cummings & Hart [Aust. J. 
Phys. (1988), 41,423-431] of five measured data sets 
of high-precision Si structure factors and subsequent 
analysis by Deutsch [Phys. Lett. A (1991), 153, 368- 
372] produced information on the charge density of 
Si with precision that is unmatched by any other 
system. A detailed comparison with newly performed 
ab initio electronic structure calculation within the 
local density formalism (LDF) is presented here. The 
convergence of the calculation is extended to the limit 
at which the results reflect the predictions of the 
underlying LDF, unobscured by computational 
uncertainties. Excellent agreement (e.g. R =0.21% 
which is three to five times better than previous calcu- 
lations) is found. This allows the effects of high-index 
structure factors to be assessed (currently beyond the 
reach of high-precision measurements) on both static 
and dynamic deformation charge densities. 

Introduction 

At least 18 structure factors of Si are now known to 
millielectron level of accuracy, 'better by one or more 
order of magnitude than any other crystal' (Deutsch, 
1992). Such unprecedented levels of accuracy in the 
structure factors and in the ensuing static electron 
density maps reflect both the application of precise 
Pendell6sung-fringe techniques to large nearly strain- 
free Si single crystals and to recent careful data analy- 
sis by Spackman (1986), Cummings & Hart (1988) 
and Deutsch (1991, 1992). Cummings & Hart (1988) 
have recently consolidated five data sets obtained in 
three independent experiments, (Aldred & Hart, 
1973; Teworte & Bonse, 1984; Saka & Kato, 1986), 
examining carefully the internal consistencies after 
corrections for anomalous dispersion (using 
measured wavelength-dependentf') and nuclear scat- 
tering. Very recently, Deutsch (1991, 1992) has fitted 
the consolidated set of Fexp(G) to a parametrized 
model density, extracting both static valence density 
pv(r) and deformation density zip(r) maps. 

These recent developments have encouraged us to 
take a second look at the theoretically calculated 
structure factors and density maps of Si. There are a 
number of reasons for this effort. First, previous calcu- 

lations were published before or during the comple- 
tion of the analysis of these high-precision Si data. 
Second, none of the previous theoretical calculations 
have published both an extended set of structure 
factors and pv(r) and zip(r) maps. Third, many of the 
previous calculations involved computational and 
physical approximations that have since become 
unnecessary. For example, both empirical 
pseudopotential studies (Walter & Cohen, 1971; 
Bertoni, Bortolani, Calandra & Nizzoli, 1973; 
Chelikowsky & Cohen, 1974; Baldereschi, Maschke, 
Milchev, Pickenhain & Unger, 1981) and first-prin- 
ciples pseudopotential work (Haman, 1979; Zunger 
& Cohen, 1979; Zunger, 1980; lhm & Cohen, 1980; 
Yin & Cohen, 1982, 1983) remove the nodal structure 
of the valence wavefunctions and neglect core contri- 
butions to the density. The first approximation 
removes the large peaks near the atomic sites evi- 
denced in the experimentally deduced pv(r) map (e.g. 
Fig. 3 of Deutsch, 1991) while the second approxima- 
tion eliminates the oscillations evident in the defor- 
mation charge density (see, for example, Fig. 2c 
below). While the second approximation could be 
partially circumvented by adding the core structure 
factors to the pseudo-valence structure factors, this 
procedure ignores core-valence orthogonality and 
leads to systematic errors noted by Spackman (1986). 
All-electron calculations, which treat core and 
valence wavefunctions on equal footing (Raccah, 
Euwema, Stukel & Collins, 1970; Stukel & Euwema, 
1970; Wang & Klein, 1981; Dovesi, Causa & 
Angonoa, 1981; Heaton & Lafon, 1981; Weyrich, 
1988; Methfessel, Rodriguez & Andersen, 1989; Pol- 
atoglou & Methfessel, 1990), are free from such com- 
plications. However, some of them involve indepen- 
dent approximations such as perturbation theory 
(Bertoni et al., 1973) or the use of small basis sets 
(Dovesi et al., 1981; Heaton & Lafon, 1981). Recent 
developments in understanding correlation effects in 
the density functional theory (Ceperley & Alder, 
1980; Perdew & Zunger, 1981) and in numerical 
strategies (see, for example, Wei & Krakauer, 1985; 
Bernard & Zunger, 1989) now make highly precise 
calculations on simple crystals straightforward. 

The basic hallmark of the calculations reported 
here, using the linearized augmented plane wave 
(LAPW) implementation (Wei & Krakauer, 1985) of 
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Table 1. Dynamic (F) and static (p) structure factors for Si in units of e (atom) -1 

The  expe r imen ta l  i:lata ( co r rec t ed  for  a n o m a l o u s  d i spe r s ion  and  nuc lea r  sca t ter ing) ,  i nc lud ing  the es t imated  s t a n d a r d  dev ia t ions  cr [in 
me ( a tom)  - t ]  are  f rom C u m m i n g s  & Har t  (1988) excep t  the 222 ref lect ion (Alkire ,  Ye lon  & Schne ide r ,  1982). The  di f ference  8 F  1 is 
F c a l c ( G ) - F e x p ( G ) ,  while  I~F2= Fsup(G ) -  Fe~o(G ). The  r o o t - m e a n - s q u a r e  dev ia t ion  for  6F I is 12 me  ( a t o m )  --~. The  static pe~r(G) is 
ex t rac ted  f r o m  F~xo(G) us ing  B = 0.4632/~2 ( S p a c k m a n ,  1986). 

D y n a m i c ,  sol id  D y n a m i c ,  a t o m s  Static,  sol id 

Fcalc(G) F~xn(G) F~.o(G) p~l~(G) P~xp(G) 
hkt [ (10)]  [ (1)]  G 6F, [ (13)]  6 F  2 [ (7)]  [ (2)]  

111 10.600 10.6025 2.9 -3  10.455 -148 10.726 10.7281 
220 8.397 8.3881 2.2 9 8.450 62 8.665 8.6557 
311 7.694 7.6814 1.9 13 7.814 133 8.033 8.0204 
222 0.161 0.1820 1.0 -21 0.000 -182 0.168 0.1908 
400 6.998 6.9958 1.2 2 7.033 37 7.452 7.4493 
331 6.706 6.7264 2.0 -20  6.646 -80 7.225 7.2473 
422 6.094 6.1123 2.2 -18 6.077 -35 6.696 6.7162 
333 5.760 5.7806 2.1 -21 5.769 -12 6.404 6.4270 
511 5.781 5.7906 2.7 -10  5.769 -22 6.428 6.4381 
440 5.318 5.3324 2.0 -14  5.302 -30 6.030 6.0462 
444 4.115 4.1239 1.8 - 9  4.107 -17 4.968 4.9791 
551 3.931 3.9349 3.4 - 4  3.925 -10 4.802 4.8072 
642 3.649 3.6558 5.4 -7  3.644 -12 4.546 4.5548 
800 3.253 3.2485 3.4 5 3.251 3 4.182 4.1764 
660 2.917 2.9143 1.6 3 2.915 1 3.870 3.8663 
555 2.802 2.8009 2.1 1 2.802 1 3.761 3.7599 
844 2.165 2.1506 2.4 14 2.163 12 3.155 3.1350 
880 1.543 1.5325 2.6 11 1.542 10 2.551 2.5331 

the local density theory (Kohn & Sham, 1965) are as 
follows. (i) Core and valence wavefunctions are 
treated on equal footing, avoiding the pseudopoten- 
tial approximation. (ii) An accurate electron-gas cor- 
relation functional (Ceperley & Alder, 1980; Perdew 
& Zunger, 1981) is used. (iii) No 'shape approxima- 
tion' (e.g. muffin tin) to the potential or charge density 
is invoked. (iv) The basis set consists of a mix between 
plane waves and localized real-space functions 
obtained from a numerical integration of the 
SchrSdinger equation of crystal-bound atoms. Simple 
(e.g. Slater or Gauss) orbitals are avoided. (v) The 
calculation is relativistic and fully self-consistent. (vi) 
We use an 'overkill' set of convergence parameters 
(size of basis set, sampling of the Brillouin zone etc.) 
so that the results reflect the underlying prediction 
of the Hamiltonian used (local density) rather than 
computational uncertainties. Our primary objective 
is therefore to compare the consolidated set of 
measured structure factors F~xp(G) (Table 1), as well 
as the experimentally deduced valence density and 
density deformation maps (Deutsch, 1991, 1992) with 
the ultimate predictions of the local density formal- 
ism, unobscured by computational uncertainties. We 
have, however, a number of additional objectives, 
best described after the main measured and calculated 
quantities are defined. 

Measured quantities and their modeling 

We will consistently denote dynamic and static charge 
densities by F and p, respectively. Dawson (1967) 
has shown that if the rigid-atom approximation is 
invoked, the dynamic structure factor F~p(G ) for 
momentum G = (2"n'/a)(hkl) can be represented as a 

convolution of the o~th-site static structure factor 
p~(G) and the c~th-site dynamic smearing function 
T~(G) as 

M 

Fexp(G)= • p,(G)T,~(G)exp( iG. 'r~) ,  (1) 
ot=l 

where 'r,~ is the position vector of any of the M atomic 
sites in the unit cell. This expression involves two 
universally used approximations: first, it partitions 
the total distribution into a linear superposition from 
scattering objects located at sites -r~,, and second it 
regards each term in the superposition as a product 
of a term associated with a non-vibrating object posi- 
tioned exactly at site a with a term that 'smears' this 
sharply defined position over space (Dawson, 1969). 
Tables 1 and 2 show the data for Si. Using the convo- 
lution approximation (1), one can extract the static 
structure factors 

M 

pexp(G)= ~ p~,(G) exp(iG.7,~) ,  (2) 
ot=l 

e.g. by the method outlined by Dawson (1967) and 
refined by Stewart (1973, 1976), Coppens et al. (1979) 
and Deutsch (1991, 1992). The approach is based on 
the fact that any ground-state crystalline properties 
such as p~, (r) can be rigorously expanded in an infinite 
set of orthonormal Kubic harmonics K~,(~) of 
angular momentum l belonging to the totally sym- 
metric (a~) representation of the ath-site group 

oc 

p,~(r)= ~ R,(r)K'~,(~). (3) 
I = 0 

Here r and ~ are the modulus and direction, respec- 
tively, of r and Rl(r) are radial functions for an atom 
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Table 2. Dynamic ( F) structure factors for Si in units 
of e (atom) -1 

The experimental data (corrected for anomalous dispersion and 
nuclear scattering according to Cummings & Hart, 1988) are the 
values of Saka & Kato (1986) that were not included in the 
consolidated set of Cummings & Hart (Table 1). The difference 
~F~ is F~c(G) - F~xp(G), while ~F2 = F~p(G) - F~xp(G). The root- 
mean-square deviation for ~Fa is 7 me (atom) -t. 

Dynamic, solid Dynamic, atom 
Fcalc(G) F.xp(G ) F~p(G) 

hkl [(13)] [(1)] SEt [(1)] 8F 2 

531 5.054 5.0655 - 1 0  5.046 - 2 0  
620 4.662 4.6707 -9 4.654 -17 
533 4.451 4.4552 -4 4.438 -17 
711 3.929 3.9282 ! 3.925 - 3  
553 3.494 3.5055 - 1 2  3.489 - 1 7  
731 3.493 3.4919 1 3.489 -3 
733 3.122 3.1270 -5 3.119 -8 
822 2.917 2.9111 6 2.915 4 
751 2.804 2.8006 3 2.802 1 
840 2.628 2.6200 8 2.627 7 
753 2.529 2.5274 2 2.529 2 
911 2.530 2.5325 -3 2.529 -4 
664 2.380 2.3677 12 2.378 10 

of type a defined by the convolution of the exact 
p~(r) with K~',(~) (we suppress the index a from Ri). 
For Td symmetry, the allowed l values are l = 0, 3, 
4, 6, 7, 8 , . . .  (l = 0 is often referred to as the 'spherical 
term', l odd is termed the 'antisymmetric term' and 
l even is the 'centrosymmetric term'). Dawson's 
method consists of truncating (3) to include only the 
leading terms l = 0, 3 and 4 and suggesting convenient 
analytic guesses for the atom-localized radial func- 
tions Rl(r  ). Deutsch used 

Rt=o(r) =4"rr ~ K3,,tp.l(K.tr) (4a) 
nl 

for the spherical term and 

Rt=3,4(r) = Atr 4 exp ( - a r )  (4b) 

for the antisymmetric and centrosymmetric terms. 
Here Knl, AI and a are adjustable parameters and p,t 
are ground-state atomic Hartree-Fock charge 
densities for orbital nl (taken from Clementi, 1965). 
He further parametrized T,,(G) of (1) in terms of the 
Debye-Waller factor B,t for shell nl and the anhar- 
monic coupling factor/3. Inserting into (1) the Fourier 
transform of the model density [(3) and (4)] and the 
model dynamic factor T,,(G) then gives an analytic 
Fourier-space representation of Fmod~(G) in terms of 
{K,I, Al, a, B,t, /3}. The se t  {Fmodel(G)} was then 
least-squares fitted to the set {F, xp(G)} of Cummings 
& Hart (1988). [Note that this approach to the 
deconvolution of p and T from F is different from 
the 'standard spherical model' (Dawson, 1969) in 
which the IP  0 terms are neglected during the fit.] 
The best fit ('model p') produced a remarkably low 
R factor of 0.036% and goodness-of-fit of 1.20. The 
best-fit parameters were then used to calculate the 

model static charge density 

of, 

Pmode~(r)=Z Z R, Ir-R,[K, Ir-R], (5) 
Ri I =0,3 ,4  

where p~ is superposed* over lattice vectors R~. Note 
that this approach for extracting p(r) from a set of 
structure factors is distinct from the direct Fourier 
synthesis method (see, for example, Pietsch, Tsirelson 
& Ozerov, 1986). There, after deconvoluting p,,(G) 
from T~(G), one constructs the truncated series 

(~rnax 

peep(r, Gmax) = E Pexp(G) exp ( iG .  r). (6) 
G 

The result depends naturally on the cut-off momen- 
tum Gmax. In contrast, the model density of (5) 
contains arbitrarily large momentum components 
although only a limited set of structure factors is used 
to determine its internal parameters. We will examine 
below the consequences of these differences. 

Calculated quantities 
While diffraction experiments produce discrete 
Fourier components of the charge density, electronic 
structure calculations can produce the total static 
density pc,,~c(r) directly in coordinate space. This is 
obtained by summing the squares of the one-electron 
crystalline wavefunction over all occupied band 
indices i and Nk Brillouin-zone wavevectors k 
enclosed within the Fermi energy eF 

Pcalc(r) = ~ N i ( k ) ~ b * ( k ,  r)~b(k,  r ) ,  (7) 
i,k 

where Ni(k) is the occupation numbers of band i. 
The Fourier components of the static charge density 
can then be computed from 

pca,~(G) =-~  Pca,~(r) exp ( - i G  • r) dr. (8) 

where /~ is the unit-cell volume. To compare with 
the experimental static charge density map 
pexp(r, Gin,x) of (6), one can then filter out all Fourier 
components above a given momentum value of G . . . .  
obtaining 

Gmax 

Pca,c(r, Gmax) = E Pcatc(G) e x p ( i G ' r ) .  (9)  
G 

Comparison with the measured F~p(G) of (1) 
requires the introduction of the temperature factor 
into the calculation. The obvious difficulty here is 

* In the original work of Deutsch (1991, 1992), the sum over 
lattice vectors Ri in (5) was inadvertently truncated to a small 
number of unit cells leading to lack of convergence in Pmoael(r). 
This was corrected in the present paper in Figs. 6(b) and 7. Also, 
the value of a in (4) published by Deutsch (1992) was in error: 
the correct value is 2.285. We are grateful to Dr Deutsch for 
communicating to us the correct a value. 
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that while the measured structure factors [(1)] 
naturally represent linear contributions from atomic- 
centered scattering centers o~, there is no unique way 
of partitioning the calculated three-dimensional 
density Pcalc(r) into atomic-centered quantities. Given 
that any partitioning of p ~ ( r )  into atomic-centered 
quantities is arbitrary, we will choose a physically 
appealing (but non-unique) scheme: having calcu- 
lated a unique and continuous density p~c(r), we 
decompose it into the 'muffin-tin' (MT) spheres 
around each atom c~ and the remaining (interstitial) 
volume between them. Denoting as p~T(G) the 
Fourier transform of the charge density in the ath 
muffin-tin sphere and by p, (G) the Fourier transform 
of the interstitial (I) charge density, the calculated 
dynamic structure factor becomes 

F~a,c(G) = p,(G) exp (-(B)G2/16rr 2) 

M 

+ 5 pMT(G) exp(-B,,G2/16~z),  (10) 
o t = l  

where B,, are the measured Debye-Waller factors and 
(B) is their average over the different atoms in the 
unit cell. For monoatomic crystals such as Si, (B) = B. 
The corresponding calculated dynamic charge density 
map is then 

G max 

Fcalc(r, Gmax)= ~ Fc~c(G) exp(iG-r),  (11) 
G 

which can be compared with Fexp(r, Gm~x) construc- 
ted from (1). 

Partitioning the charge density 
Band structures of solids generally show a clear 
energy separation between 'core' and 'valence' bands. 
Consequently, in most cases, the sum over states (i, k) 
in (7) can be separated according to Ptot(r)= 
P .. . .  (r)+pv~(r). Note that both components are 
calculated here from the mutually orthogonal solid- 
state wavefunctions {0~(k,r)}, hence avoiding the 
ambiguity of evaluating p . . . .  (r) from atomic orbitals 
and Pva~(r) from crystal orbitals (Stukel & Euwema, 
1970). The deformation electron density map is 
defined as the difference 

Gmax 

Ap~,(r, Gmax) = ~. [p~,(G)-psup.~,(G)]exp(iG'r), 
G 

(12) 

where p, stands for 'total', 'core' or 'valence'. The 
reference charge density corresponds to a superposi- 
tion (sup) of spherically symmetric ground-state 
atomic charge densities n,,(r), yielding the Fourier 
components 

M 

psur,.,~(G) = Y~ n,,.~(G) exp( iG. ' r , , ) .  (13) 

Addition of the temperature factor to (12) leads to 
the dynamic deformation density map denoted 
AF~ (r, Gmax). 

Using the model charge density of Deutsch (1991, 
1992) [(4) and (5) here], one can consistently define 
a deformation density map by analogy with (12) as 
a difference between his solid-state charge density 
and his ground-state atomic charge density 

= K nlOn! (Knlr) + R3 K3 + R 4 K 4  

- ~  pn,(r). (14) 
nl 

Note, however, that Deutsch defines his 'deformation 
density' as the quantity 

ApDeutsch(r) = R3K3+ R4K4, (15) 

i.e. subtracting deformed atomic densities from the 
solid-state result. We will see below that the two 
definitions lead to qualitatively different bonding 
features. 

Objectives 
The definitions of the previous section permit a clear 
statement of the objectives of this study, as follows. 
(i) Compare Fexp(G) [(1)] of Cummings & Hart 
(1988) to Fc~,¢(G) [(7), (8) and (10)], establishing the 
extent to which the local-density formalism can rep- 
resent the most precisely known structure factors. (ii) 
Compare the calculated pw~(r) to Deutsch's results 
(1991, 1992), examining thereby the basic bonding 
features of Si. (iii) Compare the calculated deforma- 
tion density map Aptot(r, oo) [(12)] to that deduced 
from Deutsch's fit to the data [(14)]. Establish the 
source of the gross discrepancy noted by Deutsch 
between previous calculations of Ap,ot(r) and his 
deformation density ApDeutsch(r ) [(15)]. (iv) High- 
momentum Fourier components of F(G) are com- 
monly believed to be associated with core states and 
are expected therefore to be unimportant in determin- 
ing the main features of the deformation density 
maps. Nevertheless, the description of the nodal 
structure of valence wavefunctions could require high 
Fourier components. Given that it is impractical to 
measure the very high Fourier components accu- 
rately, we will study the extent to which the main 
features of the calculated valence density Pval(r, Gmax) 
and the total deformation density map Aptot(r, Gmax) 
[(12)] are influenced by increasing Gmax beyond the 
range currently accessible to high-precision measure- 
ments. (v) It has been previously conjectured (Zuo, 
Spence & O'Keeffe, 1989) that even when the high- 
momentum Fourier components of the static defor- 
mation density p(G)-Psup(G) of (12) are non-negli- 
gible, the Debye-Waller factor exp ( - B G  2) will damp 
them. Consequently, it was suggested that high 
Fourier components can be neglected when the 
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dynamic deformation density map is considered. To 
test this, we ~vill compare the static deformation map 
Apcalc(r, Gmax) [(12)] to its dynamic counterpart 
A F ~ , ~ ( r ,  Gmax) for a series of cut-off momenta Gmax. 

(vi) Given that the model densities of (4) and (5) 
contain high Fourier components while conventional 
Fourier representations [(9)] are truncated, we will 
examine the ability of the latter to reproduce the 
former. 

Convergence of the calculations 

The great care with which Eexp(G)  have been 
measured and analyzed calls for an equivalent assess- 
ment of the calculated counterparts. There are five 
basic convergence parameters that control the pre- 
cision of the LAPW solution (Wei & Krakauer, 1985) 
to the local density Hamiltonian: (i) the number Nbasi s 

of basis functions in which 0,(r) are expanded; (ii) 
the number Nk of special k points used in the Bril- 
louin-zone summation of (7); (iii) the maximum 
angular momentum /max used in the Kubic harmonic 
expansion [analogous to (3)]; (iv) the radius RMT of 
the atomic spheres inside which the Kubic harmonic 
expansion is taken; (v) the number Nde, of Fourier 
components used to expand the charge density in the 
interstitial region. 

Table 3 shows how p~,~c(G) of (8) depends on these 
convergence parameters. In all cases we use the 
experimental lattice parameter a=5 .4307  A,. The 
table shows internal convergence to better than a 
millielectron (me). 

Dynamic and static structure factors 

Table 1 gives the experimental structure factors 
F~xp(G) from the consolidated set of Cummings & 
Hart (1988), the estimated (Deutsch, 1992) standard 
deviation o-, the calculated local-density structure fac- 
tors F~a~(G) from (8) and (10) and the difference 
6F~ = Fca,c(G ) - Fe~p(G ). While 18F, I exceeds I 1, the 
largest 18F~[ is 22me and the root-mean-square 
(r.m.s.) deviation over 18 reflections is only 12 me. 
This represents the best agreement achieved to date 
between ab initio calculated structure factors and 
experiment. Note that for some reflections (e.g. 
222, 331,422 and 333), the difference between theory 
and experiment exceeds the stated precision of both 
theory (see Table 3) and experiment (see o- in Table 
1). We have no explanation for this. It might reflect 
the limiting errors due to the current imperfect knowl- 
edge of exchange correlation or deficiencies in treat- 
ing the 'observed' temperature factors, i.e. the use of 
the 'rigid-atom approximation'  of (1). 

Table 1 also shows the dynamic superposition 
structure factors Fsup(G) [(10) and (13)], where the 
atomic densities n~ are also calculated from the local- 
density formalism using the same exchange correla- 

Table 3. Summary of  the convergence of the calculated 
static Si structure factors 

The rows show: the number Nk of Brillouin zone k points used in 
sampling the density [(7)]; the highest angular momenta /max used 
in the lattice-harmonics expansion [analogous to (3)]; the average 
number of LAPW basis functions Nb~.~,~ per atom used in wavefunc- 
tion expansion; the number Nd~, of symmetrized star functions 
used to expand the charge density and potential in the interstitial 
region; the muffin-tin radius RMr (in ,~) inside which the lattice- 
harmonics expansion is carried out. The results for the different 
reflections are then given. The first column gives the actual structure 
factors [in units of e (atom) -~], while the other columns show the 
difference [in me (atom) ~] due to various truncations. 

Nk 60 10 10 10 10 10 
/max 12 12 12 12 8 8 
Nbasi s 370 370 110 110 110 125 
Nd~ n 288 288 288 91 91 104 
RM T 1.164 1.164 1.164 1.164 1.164 1.111 

11 I 10.7258 0.7 0.3 0.3 0.3 0.6 
220 8.6647 0.2 -0.1 -0.1 0.0 0. I 
311 8.0334 0.3 -0.2 -0.2 -0.1 -0.5 
222 0.1682 0.1 0.2 0.2 0.2 0.7 
400 7.4515 0.5 -0.1 -0.1 0.0 -1.0 
331 7.2254 0.4 0.2 0.2 0.3 0.5 
880 2.5506 0.1 0.0 0.1 0.0 0.0 

tion as in the crystalline calculation. The deviation 
from experiment ]6F2l=]Fsup(G)-Fexp(G)[ is sig- 
nificantly larger than ]6F~[ for G < (440). 

Table 2 compares our calculated Fca~c(G) with the 
results Fexp(G) of Saka & Kato (1986) that were not 
included by Cummings & Hart (1988) in their critical 
compilation. We see that the differences ],SF~t are not 
larger than those seen in Table 1 for the Cummings-  
Hart set. Table 1 also compares the static structure 
factors Pexp(G) [obtained from Fexp(G) using the 
Debye-Waller factor B = 0.4632 A 2] to Pca~(G) of (8), 
giving the (unweighted) R factor ~[[Pexp[-- 
[Pca c[ I/EIP--pl" Our value R=0 .21% is two to five 
times better than any previous value (see compilation 
by Spackman, 1986). Note in particular the improve- 
ment over the pseudopotential results, e.g. Yin & 
Cohen (1982) giving R = 1.12%, Zunger (1980) yield- 
ing R = 1.49%, and Chelikowsky & Cohen (1974) 
yielding R = 0.77%. 

Untruncated core, valence and total charge densities 

Having established the accuracy of the calculated 
Fca~c(G) and pca~c(G) over the limited set of momenta 
accessible to high-precision measurements, we next 
consider the calculated real-space charge density [(7)] 
without any Fourier truncation. Fig. 1 depicts the 
calculated Pcore(r), Pval(r) and their sum Ptot(r), while 
Fig. 2 shows the corresponding deformation densities 
Ap . . . .  ( r ) ,  Ap,,al(r ) a n d  Aptot(r  ) [ (12 )  f o r  Gmax--->oo]. 

The basic features are as follows. (i) Pval(r) has 
absolute maxima on the atomic sites, a bonding 
density oriented parallel to the bond direction with 
a local minimum at the bond center and accumulation 
of charge at the back-bond regions (marked a in 
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Fig. 1. Untruncated ('G ~ oo') ab initio static charge densities for 
(a) core states, (b) valence states and (c) all occupied states. In 
this and all subsequent figures, we show side-by-side line plots 
in the (111) direction and contour plots in the (110) plane. The 
solid squares denote atomic positions while solid triangles 
denote the (empty) tetrahedral interstitial sites. Contour step = 
0.05 e A-3. The outmost contour is at 0.05 e ,~-3. 
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Fig. 2. Untruncated ('G ~ oo') ab initio static deformation charge 
densities [(12)] for (a) core states, (b) valence states and (c) all 
occupied states. The thick outer solid contour next to the dashed 
line denotes Ap = 0. Contour step = 0.025 e/~-3. 

Fig. 1 b). In contrast, the corresponding deformation 
density Apval(r) has minima near the atomic sites, a 
bonding density lobe oriented perpendicular to the 
bond direction with a maximum at the bond center 
and depletion of charge from the back-bond regions 
a. Furthermore, the amplitude of Apva~ at the bond 
center is only about a third of p,,~. Clearly, many of 
the features of Pval are dominated by atomic charac- 
teristics. (ii) As expected, p .. . .  (r) is localized near the 
atoms so that Ap ... .  (r) is mostly empty, with the 
exception of a localized charge depletion inside the 
atomic cores. Clearly the core is not entirely inert. 
Since, however, this non-inertness is highly localized 
in space, Pval(r) and Aptot(r  ) a r e  very similar over 
most of the unit-cell space. (iii) The deformation 
density maps Aptot and Apval have sharp nodal 
features near the core and sharp minima in the 'inner- 
bond region' (point/3 in Fig. 2), both reflecting the 
fact that the nodes in the crystal valence wavefunc- 
tions are shifted with respect to those in the free-atom 
valence orbitals. As will be shown below, these sharp 
features will require relatively high momentum com- 
ponents in a Fourier description. These features, as 
well as the atom-centered maxima in Pval(r), are miss- 
ing from all pseudopotential calculations since they 
use nodeless pseudo-orbitals. 

Fourier-truncated charge density maps 

Given that even deformation charge density maps 
exhibit rather sharp features in r space, we next 
examine the convergence of their Fourier representa- 
tion. Fig. 3 depicts the individual contributions from 
distinct beams [Pcalc(G)-psup(G)] exp ( i G - r )  [sum- 
mands of (12)] to the total deformation charge density 
Apca~c(r). Each of these terms can be characterized 
by, for example, the sign of the amplitude on: (i) 
atoms, (ii) bonds and (iii) tetrahedral interstitial sites 
(marked as solid triangles in all line plots), respec- 
tively. For instance, the (220) contribution has the 
respective signs ( - , 0 , - ) ,  the (311) beams is 
( - ,  +, +), the (222) beam is (0, +, 0), the (331) beam 
is (+, +, - )  etc. The variations in these signs with G 
suggest limited cancellations among the different 
Ap(G) e x p ( i G . r )  values as the Fourier series is 
summed up over G. This rate of convergence is 
examined in more detail in Fig. 4 where we plot the 
calculated Aptot(r, Gmax) of (12) for three sets of G 
vectors. First, (Fig. 4a) we use calculated pcal~(G) at 
the set G vectors of Cummings & Hart (1988) (Table 
1), employed also by Deutsch (1991, 1992) in his 
analyses. While this set extends to G <-(880), it con- 
tains only 18 of the 52 allowed reflections contained 
in this range. Second, (Fig. 4b) we show Aptot calcu- 
lated from all reflections up to Gmax = (880). Finally, 
(Fig. 4c) we depict Aptot for Gmax = (12,12,12), outside 
the range of current high-precision measurements. 
The latter Ap plot closely resembles the untruncated 
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Aptot(r, oo) of Fig. 2(c) (except for the inner core 
region)• The evolution of Aptojr, Gmax) with Gmax 
seen in Fig. 4 clearly exhibits robustness of the ampli- 
tude near the bond center. As expected, the largest 
difference between a smaller and a larger set of G 
vectors is visible near the atomic sites; the difference 
diminishes somewhat away from these sites. At the 
same time, the amplitude on the inner-bond minima 
/3 and back-bond minima a is far from convergence 
using a limited number of reflections, i . e .  Deutsch's 
set. 

Fig. 5 shows the evolution of p,~,(r, Gmax) with the 
highest value of Gmax (indicated in the inserts) 
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Fig. 3. Contributions of individual beams [summand of (12) for 
individual G vectors] to the total static deformation charge 
density. The inserts denote contour steps in e A-3. 
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included in the Fourier series of the type of (9). One 
sees a transition from smooth behavior at low Gmax 
(Fig. 5a) to an oscillatory function at intermediate 
Gmax values (Figs• 5c, d, e) and finally to a smooth 
function at high Gmax values (Fig. 5f). The latter 
Fourier-synthesized function is nearly indistinguish- 
able from the real-space representation p,~,(r, oo) of 
Fig. l(b).  Like Fig. 4, Fig. 5 also shows that, despite 
the high precision of the individual X-ray structure 
factors in the Cummings-Har t -Deutsch set, it is too 
small to capture the full structure of the converged 
charge density. The best that can be done to date by 
way of convergence of the measured series [ Figs. 4(b) 
and 5(e)] is still rather different from the convergence 
limit [Figs. 4(c) and 5(f) ,  respectively]• 

Comparison with the model charge densities: Pv,, 

The text surrounding (5) and (6) highlights the funda- 
mental difference between a Fourier synthesis 
approach [(6), illustrated in Figs. 4 and 5] and a 
model density approach [(5)] of Dawson (1967), 
Stewart (1973, 1976), Coppens e t  a l .  (1979) and 
Deutsch ( 1991, 1992): the latter method is guaranteed, 
by construction, to yield a smooth function despite 
the use of a limited set of structure factors. We will 
hence next compare the results of the model density 
to our fully converged results. 
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Fig. 4. Convergence of the ab initio calculated static deformation 
charge density Ap [(12)] with respect to the set of reflections 
included in the Fourier series: (a) the Cummings-Hart -Deutsch 
s e t  of G vectors (Table 1); (b) all reflections up to Gma x = (880) 
and (c) all reflections up to Gma ~ = (12,12,12). Contour s tep= 
0.025 e/~-3. Note that (c) is practically identical to the untrun- 
cated AO of Fig. 2(c). 
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Fig. 6 compares  our  ca lcu la ted  pv,~(r, oo) with 
Deu t sch ' s  mode l  va lence  dens i ty  [(5), where  the n l - -  

ls ,  2s, 2p a tomic  core c o m p o n e n t s  of  Rt=o(r) in (4) 
are omi t ted] .  The ag reemen t  be tween  theory  and  the 
expe r imen ta l ly  der ived func t ion  is very good.  Quant i -  
ta t ively,  we find ampl i t udes  of  0.313, 0.570 and  
0.577 e ~ - 3  on the b a c k - b o n d  m a x i m a  a,  the bond-  
center  peak  and  the b o n d - c e n t e r  dip,  respect ively,  
whi le  Deutsch  finds the values 0.298, 0.579 and  0.575, 
respect ively.  The c rescen t - shaped  peak  b e h i n d  the 
a toms  is 0 . 3 8 3 e ~  -3, whi le  Deu t sch ' s  va lue  is 

0.355 e ~ -3 .  Our  peak- to - sadd le  difference nea r  the 
b o n d  center  is 13 me A-3,  c o m p a r e d  with Deutsch ' s  
value  of  4 me A-3. The  only  s ignif icant  d i sc repancy  
exists in the i nne r -bond  m i n i m a  (po in t / 3 ) ,  where  our  
results shows a s ignif icant ly  lower  amp l i t ude  than  
Deutsch ' s  fit. Fig. 4 demons t r a t e s ,  however ,  that  this 
fea ture  is h ighly  d e p e n d e n t  on Four ier  t runca t ion ,  so 
using more  reflect ions in Deu t sch ' s  fit cou ld  change  
this value.  Our  results and  those  of  Deutsch  are very 
different  f rom the el l ipt ic  s ing le -peaked  dens i ty  
ob t a ined  by Yang & C o p p e n s  (1974) using a t runca ted  
Four ie r  series. 
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Fig. 5. Convergence of the ab initio calculated static valence 
density Pvd~ with respect to the highest momentum included in 
the Fourier sum. Note that (f) is practically identical to the 
untruncated Pw~ of Fig. l(b). 

Comparison with the model charge densities: Aptot 
Fig. 7 (a )  shows the d e f o r m a t i o n  dens i ty  map  
ApDeutsch(r) as def ined by Deutsch  [(15)] and  
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Fig. 6. Comparison of (a) the ab initio calculated static valence 
charge density ,Ova I with (b) Deutsch's fit to the data of Cummings 
& Hart (1988). Contour step =0.05 e,~-3. 
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deformation plots: (a) Deutsch's definition [(15)] in which 
deformed atoms are used as a reference and (b) the conventional 
definition [(14)] in which ground-state atoms are used as refer- 
ence. In both cases, Deutsch's parameters are used. Contour 
step = 0.025 e/~ -3 
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calculated with his model parameters (fit p). This is 
identical to his (1991) Fig. 1. We see that ApDeut~ch(r) 
exhibits a bond charge density that is elongated 
parallel to the bond direction. On this basis, Deutsch 
has criticized the calculation of Wang & Klein (1981), 
which showed a deformation density that is elongated 
perpendicular to the bond direction. However, Wang 
& Klein used the conventional definition of deforma- 
tion density, i.e. the difference between crystalline 
and ground-state atomic densities, while Deutsch's 
definition [(15)] subtracts deformed atomic densities 
from the crystalline density. Fig. 7(b) shows 
Apmodel(r ) in which Deutsch's parameters are used in 
conjunction with the standard definition, i.e. (14). We 
see that there is an elongation perpendicular to the 
bond direction, in qualitative agreement with Wang 
& Klein. The quantitative agreement remains, 
however, poor, as noted by Deutsch (1992). 

Fig. 4(c) shows our ab initio calculated deformation 
charge density Ap,ot [(12) for G ~ ] .  Comparison 
with Deutsch's (corrected) model (Fig. 7b) shows 
quantitative agreement: ~lp,o, is perpendicular to the 
bond, has a bond-center maximum of 0 .180eA 3 
(compared with Deutsch's result of 0.194 e A-3) and 
a minimum at the back-bond position a (0.67 A away 
from the atom) with an amplitude of 0.095 e,~-3 
(compared with Deutsch's result of 0 .096eA -3, 
at 0.69 A away from the atom). The details in the 
outer-bond regions/3 (best seen in the line plot) are, 
however, significantly different. Deutsch's model 
shows sharp peaks at the/3 points with pronounced 
minima on the atomic sites. These features are unmat- 
ched by any Fourier synthesis (Fig. 4) and reflect, in 
our opinion, the difficulty in reproducing the com- 
plexity of a realistic Ap,ot within the arbitrary restric- 
ted representation for R~(r) [(4)]. It is remarkable, 
however, that despite the clear insufficiency of the 
Cummings-Har t -Deutsch  set of momenta to describe 
pv~ or AP,o, in a Fourier representation (see Figs. 4 
and 5), the model density approach of (4) and (5) 
mimics very well the overall results obtained from a 
highly converged Fourier series. 

Static v s  dynamic deformation densities 

Zuo, Spence & O'Keeffe (1989) conjectured that even 
if the inclusion of the high-momentum Fourier com- 
ponents will affect the shape of the static deformation 
densities Ap(r, Gmax), they will be inconsequential for 
the dynamic deformation density dF( r ,  Gma,), since 
the Debye-Wailer factors will effectively attenuate 
such high G components. To test this hypothesis, we 
plotted in Fig. 8 the static ~lpto, and the dynamic AF, o, 
for two truncations: Gmax=(331) (Figs. 8a and b) 
and Ghig = (12,12,12). This shows that Ap,ot ~ AFro, at 
any of these truncations, thus invalidating the con- 
juncture of Zuo et al. Clearly, the Debye-Waller 
exponent exp ( - G 2 B )  does not decay fast enough in 

the range where Ap(G) is non-negligible. This implies 
that the difficult to calculate (by ab initio methods) 
dynamic charge density can be effectively replaced 
by the far simpler static density calculations. Also, 
since high-momentum Fourier components F(Gbig) 
clearly affect charge density deformation plots (viz 
Figs. 4 and 8) and valence charge density plots (viz 
Fig. 5), the current inability to measure F(Gbig ) with 
high precision poses a real limitation to our ability 
to characterize Ap,ot(r) accurately by experiment. 

Concluding remarks 

(i) State-of-the-art local-density theory is able to 
reproduce all accurately measured Si structure factors 
with a maximum error of - 2 0  me and often consider- 
ably better. R factors for 18 reflections are as small 
as 0.21%. (ii) The valence charge density pv,,l(r) 
extracted from experiment is accurately reproduced 
by our theory (Fig. 6). (iii) The global features of the 
total deformation density Aptot(r) deduced from 
experiment are reproduced well by our theory [Figs. 
4(c) and 7(b)]. The sharp features in the experi- 
mentally deduced Apmodel(r ) are, however, un- 
matched by theory at any level of Fourier truncation. 
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Fig. 8. Comparison of static (zap) and dynamic (AF) density 
deformation maps for two Fourier truncations: Gmax = (331) in 
(a) and (b) and Gbig = (12,12,12) in (c) and (d). Contour step = 
0.025 e A ~ 
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We suspect that this reflects a limitation in the choice 
of simple radial functions [(4)] in the fit to experi- 
ment. (iv) Valence charge densities pw~(r) and defor- 
mation charge densities Aptot(r) exhibit some local- 
ized features reflecting changes in the atomic nodal 
structures by the crystalline environment [Figs. l (a )  
and 2(c)]. This leads to moderately slow convergence 
of the respective Fourier series (Figs. 4 and 5). Even 
the (relatively large) set of reflections used by Cum- 
mings & Hart (1988) is insufficient for capturing such 
features in a Fourier synthesis. A similar situation 
exists for GaAs, where the measured reflections (Zuo, 
Spence & O'Keeffe, 1988) were shown (Bernard & 
Zunger, 1989) to be insufficient to capture the main 
features of Aptot. The model density approach [(3)-  
(5)], however, is able to reproduce the global features 
of a highly converged Fourier series. (v) The conjec- 
ture of Zuo, Spence & O'Keeffe (1989) that high- 
momentum components will not significantly modify 
dynamical deformation maps is not supported by our 
calculations. We find that the static maps Ap(r, Gmax) 
closely track the dynamic maps AF(r, Gm~x) for any 
Gmax- In view of (iv) above, this implies that the 
current inability to measure high Fourier components 
accurately does affect the accuracy of the ensuing 
deformation density maps. 

As a final note we remark that the ab initio calcula- 
tions of the type reported here are now very simple 
and inexpensive to carry out: starting from scratch, 
the Si calculation involving convergence limits that 
produce better than 1 me error in any p(G) take only 
3 min on a CRAY YMP computer and involve no 
human intervention. As accurate data on other crys- 
tals becomes available, similar calculations could 
readily be carried out. 
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